Industrial lubrication systems require close monitoring of the lubricating fluid to detect contaminants and prevent the resultant degradation of the fluid. Contaminants such as water and metallic fines are commonly monitored manually, requiring routine sampling and laboratory analysis.
Contamination of amine systems (Refer to Figure 1 on following page) results in operational and environmental challenges for the operator. Contaminants include: Particles such as iron sulfide with the feed, Heat stable salts, Surface active agents, Liquid hydrocarbon in the gas feed, Carboxylic acids formed from oxygen entering the amine system, Corrosion inhibitors and water treatment chemicals entering with makeup water and wash water
Determining the production rate from oil wells is simpler and less costly because of AGAR’s advanced technologies. For many years complex 3-phase separators were the industry standard because measurement technologies required the separation of the hydrocarbon, water, and gas phases.
The Agar System 2 provides automatic monitoring and indication of accumulated hydrocarbon in API skimmer systems. When used in conjunction with mechanical or pneumatic actuators, the system provides complete
automatic control of the oil recovery process.
Refineries currently utilizing Agar systems increase throughput up to 20% and significantly reduce theamount of process upsets - resulting in up to an 80% reduction in hydrocarbon under carry to the waste water treatment plant as witnessed by the Environmental Protection Agency (EPA). Agar systems provide an unmatched ability to optimize difficult separation processes by utilizing concentration measurement and control.
A common problem in the Sour Water (SW) Stripper Unit is caused when hydrocarbon is discharged with the sour water from the Knock-out Drum into the Surge Tank which feeds the SW Stripper Column (see simplified process flow diagram). The hydrocarbons will vaporize with the sour gas being sent to the Sulfur Recovery Unit (SRU).
As oil becomes heavier and more viscous, it is more and more difficult to get the oil to flow into the well bore where it can be pumped to the surface. This heavy Canadian oil is often referred to as bitumen and has an API gravity ranging from 8—14.
Produced oil contains water in highly variable amounts. Heater-treaters heat the produced fluid to break oil/water emulsions and to reduce the oil viscosity. The water is then typically removed by utilizing gravity to allow the free water to separate from the oil.
Common techniques for foam detection include: DP gauges, capacitance probes, guided wave radar, electromagnetic radiation, neutron-backscatter, sonic echo devices, flow meters, and sight glasses. Most of these do not offer early foam detection.
By contacting hydrocarbon with mercaptan rich caustic, a very stable emulsion may form in the UOP Merox process. This causes significant quantities of caustic to carry over with the product.