XMTCpro Process Gas Analysis

XMTCPRO

New Generation Thermal Conductivity Binary Gas Analyzer

- Highly accurate and durable thermal conductivity sensor
- Compact design for cost-effective intergration into the process
- Intuitive operator interface
- MODBUS digital communication
- Minimal maintenance; user controlled

HIGHLIGHTS

Functional safety, SIL2 by design

Status LED indicators

Multi-parameter display

Menu structure, intuitive navigation

Easy control under all conditions

Certified for use in hazardous area environments

Ultra stable sensor, no moving parts

GAS ANALYSIS

Gases such as hydrogen, methane or carbon dioxide must be measured and continuously monitored in many processes, from explosion prevention to ensuring that process conditions meet the requirements for successful process operation.

XMTCPRO

By combining proven thermal conductivity technology with enhanced performance, the XMTCpro delivers what customers really care about: accuracy, endurance, reliability and ease of use.

Thermal conductivity is the preferred technology for measuring concentrations in binary gas mixtures. This technology relies on each gas in a binary gas mixture having a different thermal conductivity.

Ultra-stable, temperature-controlled measuring elements reliably quantify one gas in a two-gas mixture or in a multi-gas (pseudo-binary) mixture

XMTCpro Process Gas Analysis

where the thermal conductivity of the background is stable.

Safety requirements are stringent and space is at a premium in the critical applications where gas analyzers are commonly used. XMTCpro is innovative due to the combination of the SIL-rating, time-proven sensor performance, intuitive user interface, digital communication protocol, and compact explosion-proof housing.

XMTCpro users benefit of all these advantages in applications such as electrolyzer hydrogen and oxygen purity applications. The reliable measurements that the XMTCpro provides increase user's confidence in processes where stability, efficiency and safety are critical.

INDUSTRIES

Typical Applications

Hydrogen Economy

Hydrogen in various applications along the hydrogen value chain

Industrial Gases

Control of high-purity gases Synthesis gas measurements

Power Plant Hydrogen-cooled generators

Metal Processing Monitor furnace atmospheres

Natural Gas

Measure methane and carbon dioxide at various points in the plant

Refinery/Petrochemical

Hydrogen in recycle gas Steam methane reforming, CCUS Hydrogen purity

Landfill/Biogas

Measure carbon dioxide in methane of raw gas and after separation

Food/Beverage Carbon dioxide in fermentation processes

SAMPLE SYSTEMS

Save money and time with the right sample systems from the application experts.

Sample systems are an essential piece of equipment for obtaining optimal information from your process analyzers. For customized design of your sample system, turn to Panametrics, the application experts with more than 60 years' experience in custom application engineering.

BENEFITS:

Designed specifically to meet the needs of your Panametrics analyzer, Panametrics sample systems reduce cost and downtime by:

- Providing a properly-conditioned representative sample, for best measurement accuracy and reliability
- Extending analyzer life
- Minimizing analyzer maintenance and associated parts and labor
- Facilitating field calibration

XMTCpro New Generation Thermal Conductivity Binary Gas Analyzer

Panametrics' XMTCpro is a compact, and robust analyzer with SIL 2 by design for continuous measurement of gas concentrations in binary gas mixtures, including hydrogen, carbon dioxide, methane, helium, and many others.

KEY BENEFITS

Gases such as hydrogen, methane or carbon dioxide must be measured and continuously monitored in many processes, from explosion prevention to ensuring that process conditions meet the requirements for successful process operation. XMTCpro brings the user:

- Ultra-stable thermal conductivity sensor,
- Compact design for economic sample system integration
- Intuitive operating interface allows short learning curve, easy and flexible to use,
- Integrated high contrast, easy-to-read multiparameter display,
- MODBUS digital communication provides
 measurement and configuration data,
- High level of reliability with SIL 2 by design.

MINIMAL CALIBRATION AND SERVICE

The XMTCpro is the most stable thermal conductivity analyzer on the market today. The rugged XMTCpro measuring cell resists contamination and remains insensitive to flow variations. Since the design uses no moving parts, the transmitter can easily withstand the shock, vibration and harsh environments found in many industrial applications. If the transmitter requires maintenance, its modular construction permits fast and easy servicing. Users can field-calibrate it quickly and replace the plugin measuring cell with a pre-calibrated spare in minutes.

Sample system

Sample systems deliver a clean, representative sample to the XMTCpro at optimal temperatures, pressures and flow rates.

Panametrics offers sample systems for a wide variety of applications. For assistance in designing your own sample system, please consult our application engineering team.

APPLICATIONS

The stable and accurate thermal conductivity sensor, certified globally for use in hazardous area environments, make the XMTCpro the tool of choice for use in:

Hydrogen Economy

 $\rm H_{_2}$ in various applications along the hydrogen value chain

Metals industry H₂ in N₂ atmosphere in metal heat-treating furnaces **Electric power industry**

H₂ in cooling systems for generators Petroleum industry H₂ in hydrocarbon streams

 H_2 in hydrocarbon streams **Chemical industry** H_2 in NH₃ and in CH₃OH synthesis gas H_2 in chlorine plants **Methane industry** CO_2 in CH₄ **Landfill/biogas industry** CO_2 in biogas CH_4 in biogas **Gas production industry**

Purity monitoring of Ar, H_2 , N, and He Food Industry CO_2 in fermentation process

XMTCpro New Generation Thermal Conductivity Binary Gas Analyzer

PERFORMANCE

Accuracy: ±2% of span* Linearity: ±1% of span Repeatability: ±0.5% of span Zero Stability: ±0.5% of span per week Span Stability: ±0.5% of span per week Response Time: 20 seconds for 90% step change

Measurement Ranges

- 0% to 1%
- 0% to 2%
- 0% to 5%
- 0% to 10%
- 0% to 25%
- 0% to 50%
- 0% to 100%
- 50% to 100%
- 80% to 100%
- 90% to 100%
- 95% to 100%
- 98% to 100%

Measurement Gases (Typical)

- H₂ in N₂, air, O₂ or CO₂ He in N₂ or air
- CO_2 in N_2 or air
- SO₂ in air
- Ar in N₂ or air
- H₂/CO₂/air for hydrogen-cooled generators

Required Sample Flow Rate

0.1 to 4.0 SCFH (10 to 2,000 cc/min); 0.5 SCFH (250 cc/min) nominal

FUNCTIONAL

Functional Safety

IEC61508 SIL 2 (optional)

Analog Output

Two 4 to 20 mA isolated, 550 Ω maximum load, fieldprogrammable

Digital Output

Modbus RS232/RS485

Power

24 VDC ±4 VDC, 1.2 A maximum

Temperature

Ambient Operating temperature range (2 options)

Option 1: -20°C to +50°C Option 2: -5°C to +65°C Storage temperature range: -20°C to +65°C

PHYSICAL

Sensor wetted materials

- Standard: 316 stainless steel, glass and Viton® O-rings
- Optional: Hastelloy C276 and Chemraz® O-rings

Dimensions

- Wp. (H x D x W): 228 x 178 x 142mm (9 x 7 x 6in)
- Ex-proof (H x D x W): 252 x 178 x 142mm (10 x 7 x 6in)

Weight

- Aluminum version: 4.5kg / 9.9 lb
- Stainless Steel version: 11.0 kg / 24.2 lb

Connections

- 3/4 in NPT (electrical)
- 1/4 in NPTF (sample gas inlet/outlet)

Environmental

• IP66, Type 4X

IECEx compliance

• Ex db IIC T6 Gb, Ex tb IIIC T78°C Db,

-20°C < Tamb < +65°C

European Union compliance

- EMC Directive 2014/30/EU
- ATEX 2014/34/EU: II 2 GD Ex db IIC T6 Gb, Ex tb IIIC T78°C Db, -20°C < Tamb < +65°C

NEC/CEC

- Cl I, II, III Div 1. Groups ABCDEFG, T6
- Cl I, Zn 1 AEx/Ex db IIC T6 Gb
- Cl II, Zn 21 AEx/Ex tb IIIC T78°C Db
- Cl I, II, III Div 2, Groups ABCDEFG, T6/T5**
- -20°C < Tamb < +65°C

* Accuracy may vary and depends on the gases and concentration ranges measured.

** T5 applies for higher max ambient temperatures (from +55°C to +65°C) for Division 2 (US/Canada).

XMTCpro New Generation Thermal Conductivity Binary Gas Analyzer

ALUMINUM VERSION

**4.27 [108.5] WEATHERPROOF VERSION

[30.0]

[17.0]

STAINLESS STEEL VERSION

ORDER AND CALIBRATION INFORMATION

	Model XMTCpro, Thermal Conductivity Analyzer									
nents	•	 Aluminium enclosure, weatherproof, with display Aluminium enclosure, explosion proof, with display Stainless steel enclosure, weatherproof, with display Stainless steel enclosure, explosion proof , with display Aluminium enclosure, weatherproof, no display Aluminium enclosure, explosion proof no display Aluminium enclosure, explosion proof no display 								
liren		 Auminium enclosure, explosion proof, no display Stainless steel enclosure, weatherproof, no display 								
Regu		8 Stainless steel enclosure, explosion proof , no display 9 Without enclosure								
ite F		Wetted Material 1 316 Staipless Steel Viton O Pings DTEE								
on S		2 Hastelloy, Chemraz O - Rings, PTFE								
allati		 3 316 Stainless Steel, Chemraz O -Rings, PTFE 4 316 Stainless Steel, Viton O -Rings, CPVC 								
Insta	 5 Hastelloy, Chemraz O -Rings, CPVC 6 316 Stainless Steel, Chemraz O -Rings, CPVC • Certification 1 Safe Area/General Purpose Area 2 USA/CAN Div 1, Zone 1/21 									
				3 USA 4 ATE	A/CAN EX/IEC	Div: Ex	2, Zon	.e 2/22		
				Cell	55 °C	erat	ure So	et Point		
				1	70 ºC	5		_		
				•	Con 1	cent 0 to :	ration 1%	Range		
					2 3	0 TC 0 TC) 2%) 5%			
					4	0 TC) 10%			
					6	0 TC	, <u>2</u> ,5%)) 50%			
					8	0 TC 50 T) 100% O 100%	%		
pec					9 10	80 T 90 T	O 100	% %		
and (11 95 TO 100% 12 98 TO 100% S OTHER									
are, a										
oftwa					•	Cali 1	H_2/N_2	n Gas		
2 He/N 3 He/Air 4 CO ₂ /Air 5 CO /N										
form						6	CH ₄ /0	CO ₂		
. Per						8	H_2/C	On ₄ O ₂ /Air		
rtica.						9 10	H ₂ /O ₂ O ₂ /H	2		
naly						S	OTH	ĒR		
						Ĭ	0	Standard		
							1	Safety Le	evel	Sled Generator
								SIL NON-SIL	SIL2 : Safet	By Design y Model Standard
								•	Spec	ial No Special
									S	Special
		↓ ▼	•	↓ ↓	4	+	•		•	
	лм і Срі	-2	-T -	4 U	- /	-9	U	- 31L	U	

INS-DS-0375- SEP 24