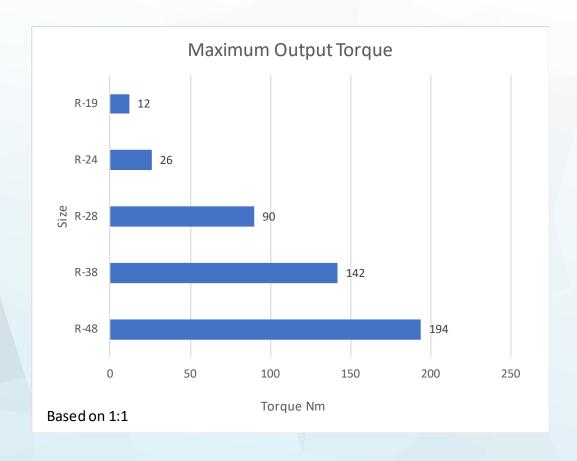


R BEVEL GEARBOX


Built in five sizes with three types of output shaft: hollow, projecting or double-extended.

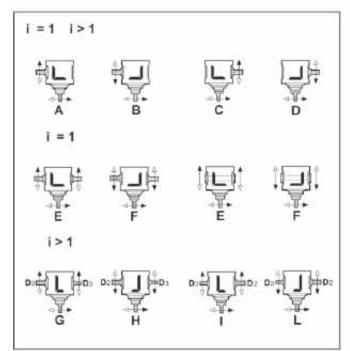
Moreover, an additional output shaft can be installed opposite the input shaft.

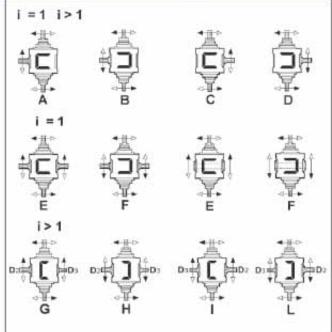
Gear unit body in engineering cast iron, EN GJL 200 UNI EN 1561 ribbed internally and externally to guarantee rigidity and machined on all surfaces for easy positioning. The single lubrication chamber guarantees improved heat dissipation and better lubrication of all the internal components.

4.0	n	1 = 14	00		RC - R	F	RA		
R	in	ir	n ₂	T ₂ Nm	P1 kW	FS'	T _{2M} Nm	P kW	
	1	1	1400	12	1.8	3	35	5.5	
40	2.5	2.56	546	30	1.8	1.6	50	3	
19	5	4.90	285	48	1.5	1	48	1.5	
	10	9.85	142	48	0.75	1	48	0.75	
	1	11	1400	26	4	2.7	73	:11:	
0.4	2.5	2.56	546	68	4	1.4	93	5.5	
24	5	4.90	285	97	3	1	97	3	
	10	9.85	142	98	1.5	1	98	1.5	
	1	1	1400	61	9.2	2.4	146	22	
28	2.5	2.56	546	158	9.2	1.2	187	11	
20	5	4.90	285	179	5.5	3.	179	5.5	
	10	9.85	142	196	3	1	196	3	

4.00	n	1 = 140	00	F	RC - R	RA		
R	in	ir	n ₂	T ₂ Nm	P1 kW	FS'	T _{2M} Nm	P kW
	1	1	1400	146	22	2	291	45
20	2.5	2.56	546	373	22	1	365	22
38	5	4.90	285	357	11	1	350	11
	10	9.85	142	359	5.5	1	350	5.5
- 2	1	:10	1400	199	30	3	596	90
40	2.5	2.56	546	509	30	1.5	763	45
48	5	4.90	285	715	22	1	715	22
	10	9.85	142	717	11	1	717	11

Verifica termica necessaria / Thermal rating needed / Thermische - Prüfung erforderlich


R	9					IE	C				
K		63	71	80	90	100	112	132	160	180	200
40	1	R	F	RC-	- RF	0	77		57		
19	2.5-5-10		RC	- RF	15	v	100				
24	1	1 RF				RC-RF					
24	2.5-5-10				RC-RF	10					
28	1			R	F		RC-RF				
28	2.5-5-10					RC-RF					
	1					RF			RC-RF		
38	2.5-5-10				1000						
40	1							200			
48	2.5-5-10							RC	- RF		


6.8 Senso di rotazione alberi

6.8 Shaft Rotation Direction

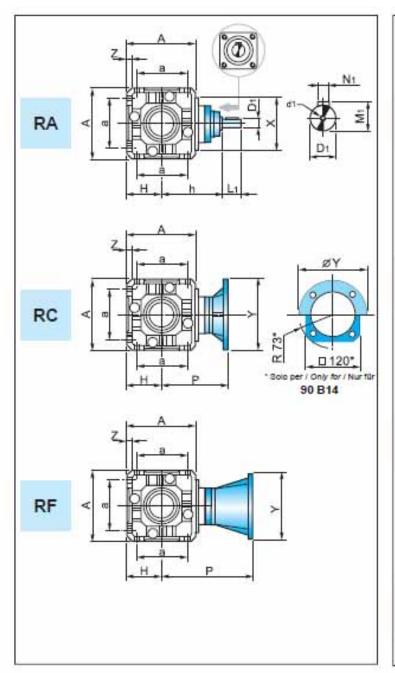
6.8 Wellendrehrichtungen

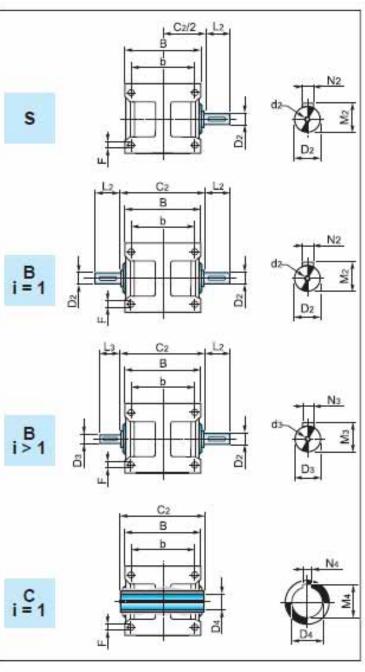
s.e. =
Entrata supplementare / Additional input / Zusatzantrieb

			RA	RC	RF	
		19	24	28	38	48
Α		112	142	180	224	280
a		80	100	130	160	190
В		128	146	175	204	230
b		110	125	145	175	200
C2	enter vo	130	150	180	210	240
D2 ht	i = 1	19	24	28	38	48
d2		M8	M8	M8	M10	M12
M2	i>1	21.5	27	31	41	51.5
N2	and the same	6	8	8	10	14
F		7	9	11	13	15
Н	1 1	56	71	90	112	140
L2		40	50	60	80	110
Z		7	9	10	13	15
D3 _{h6}		19	24	28	38	48
d3		M8	M8	M8	M10	M12
L3		40	50	60	80	110
МЗ	i = 1	21.5	27	31	41	51.5
N3	1=1	6	8	8	10	14
D4 _{H7}		20	25	30	40	50
M4	1 1	22.8	28.3	33.3	43.3	53.8
N4		6	8	8	12	14
D3 _{h6}		14	19	24	28	38
d3		M6	M8	M8	M10	M10
L3	i>1	30	40	50	60	80
МЗ		16	21.5	27	31	41
N3		5	6	8	8	10

				RA							
		19	24	28	38	48					
h		101	120	147	170	207.5					
D1 _{ht}	5 LW1 - P5	19	24	28	38	48					
d1	i = 1	MB	M8	M8	M10	M12					
M1		21.5	27	31	41	51.5					
N1		6	8	8	10	14					
h		110	130	160	190	237.5					
D1 m		14	19	24	28	38					
d1	i>1	M6	M8	M8	M8	M10					
M1	1.0	16	21.5	27	31	41					
N1		5	6	8	8	10					
L1	i = 1	30	40	50	60	80					
X	i > 1	90	110	130	150	175					
-	(g	8.5	14	23	38	62					
		RC RF									
	(g	11.5	19	33	55	82					

6						RC								
				19			24							
4	EC	63 B5	71 B5	80/90 B5	80 B14	71 B5	80 B5	90 B5	90° B14	100/112 B5				
	Q				12 <u>—</u> 31		- 22	223	120	N_S				
-	Y	140	160	200	120	160	200	200	148	250				
Р	i = 1	_		131	131	_	144	148	148	158				
р	i>1	113	120	140	140	138	158	158	158	168				


0														
	28 38							48						
- 4	EC	80/90	100/112	132	80/90	100/112	132	160/180	100/112	132	160	180	200	
	Y	200	250	300	200	250	300	350	250	300	350	350	400	
Р	i = 1	-	181	203	-	-	216	246	220	270	270	270	270	
Р	i>1	184	194	216	204	214	236	266	250 (i=2.5 - 5) 260 (i=10)	300 (i=2.5 - 5) 310 (i=10			=10)	


^{*} Flange quadrate / Square flanges / Viereckige Flansche

										RI									
			19 24 28							38				48					
IEC		63	71	80/90	71	80/90	100 112	80/90	100 112	132	80	90	100 112	132	160 180	100 112	132	160 180	200
	Υ	140	160	200	160	200	250	200	250	300	200	200	250	300	350	250	300	350	400
Р	i = 1	158	165	186	194	215	225	252	262	283		285	295	316	346	354	373	405	405
P	i>1	187	174	195	204	225	235	265	275	296	305	305	315	338	386	384	403	435	435

Email: flowandindustrial@hmagrp.com

Tel: +61 (0)3 8720 6770 **DW & INDUSTRIAL Fax:** +61 (0)3 8720 6779