Data sheet DS/2101183-EN

PGC1000 Process gas chromatograph

The PGC1000 is a shelterless fieldmounted GC capable of measurements of C1 through C9+, inerts, and H2S in various Hydrocarbon Processing Industry (HPI) streams.

Introduction

The PGC1000 is ideal for measuring light hydrocarbon gases in locations where minimal space is available and a simple, reliable, low cost measurement is required. The analyzer is an excellent choice for most gas processing industry applications. It is an equally exceptional choice for monitoring fuel gases such as natural gas, synthetic gas, methane, and/or bio-gas required for the efficient operation of process equipment and plant-wide systems in the hydrocarbon processing industry (HPI). Servicing the PGC1000 requires minimal effort. The modular analytical hardware is easily removed by loosening one bolt. PGC1000 innovations include:

- Compact footprint 16 inches, front to back, 28 pounds
- Conventional analytical components, not a GC on a chip
- Windows CE® operating system
- Interactive; a graphical display actuated by magnet contact
- Low cost-of-ownership low carrier usage, and power and no instrument air

Simple, reliable, easy to service, low cost measurement!

PGC1000 Process Gas Chromatograph

Standard features

Modular design includes

- Modular software application-based, plug-in software modules
- Manifold module
- Analysis section contains stream selection solenoids, pressure regulators, 32-bit digital detector electronics and a dual-train chromatograph in a single, replaceable module
- 32-bit digital, low power, controlling electronics. Uses Windows CE® (internal to GC unit)
- Microsoft® Windows® XP or Windows® 7, remote user interface software (PGC1000 RUI)
- Lithium battery-backed RAM
- Two remote serial digital communications ports; one local port
- Comprehensive diagnostics and wizards available to users
- Pre-defined applications Trains are pre-engineered to measure components at the ranges and performance required
- Explosion-proof designed for hazardous environments
- Solar power option
- Custody transfer for gases entering the plant
- Two-level security for user access control
- Audit-quality historical data; date and time stamped

- Operational alarms available with each analysis cycle
- Detectors constant temperature, glass encapsulated thermistor beads for rugged service and long life. Will not burn out on loss of carrier
- TCD requiring no reference bead for reduced noise, allowing greater sensitivity. Detectable limit as low as 1 ppm
- Dual, ten port valves with no moving metal parts millions of cycles between failure
- Low utility usage low-power, low-carrier, and no instrument air required
- On demand or scheduled automatic calibration and diagnostics
- Four types of pre-engineered sample conditioning systems, Custom sample systems available
- Onboard, digital 1/4" VGA display with multiple screen access
- USB (host and client) and Ethernet ports
- SD memory cards for storiing up to chromatograms
- Feed-through heater

(Default1) The default memory configuration will provide for the historical data storage above. Users may reallocate the memory that is available.

Operator interface

Functional set up and operation of the PGC1000 is accomplished by using a graphical user interface software package called PCCU (supplied with each unit). PCCU operates on a laptop or workstation PC. The Windows® utilities, combined with software designed specifically for the PGC1000, provide a powerful tool for operations, diagnostics, and downstream data handling. The PC can be directly connected to the PGC1000 via an RS-232, RS-422, RS-485, USB, or Ethernet connection. The Ethernet connection allows seamless integration onto the VistaNET Analyzer Network and VistaSTAR server.

The user is prompted through PCCU push-buttons, dropdown boxes, wizards, and dialog boxes for setup, operations, data collection, and monitoring.

In addition, the unit has a standard ¼" VGA interactive display screen allowing the user access to basic analysis data. The user can also accomplish most of the "operator" functions from the front panel display without the use of a laptop or workstation PC. The Run-Hold-Calibrate functions can be performed via a magnet interface through the explosion-proof glass in the display.

Maintenance

The PGC1000 was designed from the ground up to be maintained by personnel with little or no prior knowledge of process gas chromatography. Both hardware and software are designed to provide low maintenance through easily replaceable electro-mechanical modules such as:

- PGC1000 termination panel
- PGC1000 analytical module, an easily removable chromatograph subassembly, containing: PGC1000 manifold, stream selector solenoid valves, GC valve assembly, dual electronic carrier pressure regulator valves, chromatograph pilot valve, and the PGC1000 analytical processor.
- Heated PGC1000 feed-through
- Sample conditioning module (SCM)
- PGC1000 controller (32-bit Processor)

Other maintenance support features

- Intuitive local operator interface (PGC1000 RUI) running Microsoft® Windows®
- Diagnostic software and wizards for maintenance
- Digitized detector output (chromatogram) to PGC1000 RUI
- Remote or local operation of PGC1000 RUI
- Calibration and validation reports (pending)
- Quick Start Guide, Start-Up Manual, and Start Up Video

PGC1000 Process Gas Chromatograph

Historical data

The PGC1000 is designed to retain historical data. This data can be used for audit trails, maintenance, and troubleshooting to verify chromatograph operation over time and provide a limited data backup for communication link reliability.

The user is allowed to configure the period of the data retained by the PGC1000 via the Operator Interface. The default1 memory configuration provides the most recent 480 analysis cycles containing:

- Normalized components
- Un-normalized components
- Alarms

Stream averages are provided for the (default1) last 840 hours, or 35 last days and the most recent month's analyses. Operational parameters for the (default1) last 480 cycles (Diagnostics Report) include:

- Selected peak times
- Ambient temperature
- Selected peak areasCarrier regulator pressure
- Sample pressureDetector noise values
- Oven temperature
- Detector holse values
 Detector balance values
- oven temperature
- Audit logs (default1)
- Last 500 alarms
- Last 500 events

The SD memory card retains chromatograms for evaluation of previous analysis results. Number of chromatograms configurable per stream are based on SD card size.

Data retained by the PGC1000 can be collected via a remote communication link (PGC1000 RUI), by the laptop, or by a PC local operator interface.

Available accessories

- 120/240 Vac to 12Vdc GP and exp power supplies
- Wall, pole or pipeline mounting kits
- Cold weather enclosure (also available in pipe mount configuration) large and small
- Regulators (carrier and calibration blend)
- SD memory card recommend 1 gigabyte
- Export crating
- Tool kit
- Various maintenance kits
- Helium to hydrogen conversion carrier gas kit

Portable PGC1000

A portable PGC1000 is offered for single analyzers (up to two trains) using helium or nitrogen carrier gas. Hydrogen carrier and/or dual units are not available as a portable PGC1000 option.

Specifications

- The PGC1000 is designed for clean/dry gas streams where:
 - Clean is defined as having no particles larger than 1 micron and no more than 1 milligram of solids per cubic meter of gas
 - Dry is defined as no more than 7 pounds of water per million cubic feet of gas
 - Dry is also defined as having less than 0.1 ppm of liquid at the coldest ambient condition expected at the coldest point in the system (the liquid can be water, oil, synthetic lubricant, glycol, condensed sample, or any other nonvapor contaminate)
 - Stable gas is defined as a vapor containing less than
 0.1 ppm of liquid when the vapor is cooled to 10°C
 below the coldest ambient temperature possible at any
 point in the system
- Four stream capability is available Manual calibration is required with four sample streams
- Capable of single auto calibration stream and three sample streams or two auto calibration streams and two sample streams
- One less stream is available for hydrogen carrier units

Dimensions	6.75" diameter x 16" long x 9.00" tall	
	(17.1 cm x 40.6 cm x 22.9 cm)	Communications
Weight	Approximately 28 lb. (12.7 Kg)	
	Shipping Weight: 47 lb. (21.3 Kg)	
Weatherproof	CSA TYPE 4x, IECEx IP56, ATEX TYPE 4X	
construction	(IP66 Equivalent)	Protocols supported
Carrier gas	Helium, hydrogen and nitrogen consumption	
	rate typically <20 cc/minute during cycle	
	analysis	
Analysis time	Determined by application	Standard calculatio
Repeatability	Defined by application. Typically ±1% of the	
	measured value	Inputs/Outputs
Temperature range (storage)	-22°F to +140°F (-30°C to 60°C)	
Temperature range (normal)	0°F to 131°F (-18°C to 55°C)	
with cold weather	-40°F to 131°F (-40°C to 55°C)	ASTM Standards an
enclosure		Gas Compositions
Supply voltage	12Vdc (10.5 to 16 Vdc capable)	
	24Vdc (21 to 28 Vdc capable)	
Power consumption	@ 0°F (–18°C): Nominal: 7 Watts (no Aux.	
	Heater)	
	Up to 64 watts (with Auxiliary Heater)	
	(Maximum instantaneious current requirements	
	are application dependent. See user manual for	
	details.)	

Certifications	CSA – Explosion-proof: NEC & CEC Class I, Div 1. Gro BCD, T6
	ATEX Elementreef II 20 Ev d IIB H2 Te Ch
	IECEV Elementoof: Evid IIP, H2, T6
	ECEX = Flameproof: EX d IID + H2, To
	KOGAS – Flameproof: Ex d IIB+H2, 16
	GOSI-R – Flameproof: IExdIIB16/H2X
	INMETRO – Flameproof: Ex d IIB+H2, T6 Gb
	China Pattern Approval
Electromagnetic	ECC - CEP 47 Part 15 Subpart B Class B
compatibility	ACINZO CIORD OD CIERT D
	AS/NZS CISPR 22, Class B
	EIVIC = EN61000-6-3, (Radiated and
	Conducted Emissions, Class B)
	EMC – EN61000-6-1, (Immunity, Light
	Industrial)
	EN61000-4-2, ESD 8kV Air, 4kV Contact
	EN61000-4-3, RF Immunity, 10V/m
	EN61000-4-4, EFT, 2kV
	EN61000-4-6, Conducted Susceptibility,
	10Vrms
	EN61000-4-8m Magnetic Field, 10A/m
Communications	Two serial digital ports, software selectable
	for RS-232, RS-485, or RS-422. One USB
	MMI. USB hub (host and client), Ethernet
	(TCP/IP) ports and VistaNet/VistaSTAR server
Protocols supported	OPC
	MODBUS ASCII or RTU
	MODBUS / TCP Server
	MODBUS / TCP Client
Standard calculations	BTU, Wobbe, specific gravity and
	hydrocarbon dewpoint (upon request)
Inputs/Outputs	2 Digital inputs (DI)
	2 Digital outputs (DO)
	Analog outputs externally and project-based
ASTM Standards and	Designed to meet:
Gas Compositions	ASTMD 2145-03; ASTMD 3588; ASTMD
•	1945 (additional ASTM standards may be
	applicable)
	ISO 6974, ISO 6976 Flat, ISO 10723, ISO
	12231, GPA 2172, GPA 2261, GPA 2145-09

PGC1000 Process Gas Chromatograph

Targeted applications

App category	App description	Cycle time/	Train
		carrier	
H2	Hydrogen - 0.1-100%	75 N2	BCJ
02	Trace oxygen - 30-2000 ppm	330 H2/He	BBP
	% Level oxygen - 0.2-21%	330 He	BBH
H2O	Trace Moisture - H2O	90 He	BCR
	0.002-2%		
CO	Carbon monoxide -	330 H2/He	BBH
	0.2-100%		
H2S	H2S in fuel gas - 0-300 ppm	180/150 He/H2	BBR/BCM
H2S	Low level ppm H2S	660 sec	BDB
HRVOC	Highly reactive volatile organic	420 He	BBC/BBJ/BBH
	compounds		
Permanent gasses	H2/O2/N2/CO	330 H2/He	BBH
Light hydrocarbons	C3+ w/N2/O2 split - Landfill	360 He	BBH/BCB
Light hydrocarbons	C3+ w/N2/O2 split - Landfill	345 He	BDG

NOTE: The application tables above provide the user with an overview of ABB's Totalflow line of analytical products. Also included are the Totalflow line of predefined solutions/ applications which illustrate how the table may be used to combine trains to satisfy a particular analysis requirement.

ydrocarbons	Std C6+Btu application	315 H2/He	BBK/BBF
as quality)	Fast C6+ Btu app (H2 carrier)	90 H2	BCD/BCF
	Fast C6+ Btu app (He carrier)	180 He	BCC/BCG
	C6+ Btu application up to	315 H2/He	BBF/BBM
	1200 ppm H2S		
	C7+ Btu application	360 H2/He	BBF/BBS
	C7+ Btu application up to	540 H2/He	BBF/BCH
	1200 ppm H2S		
	C9+ Btu application w/	360 He	BBK/BBF/BBT
	HCDP available		
	C6+ with trace H2S	360 He	BBK/BBF/BBR
	C6+ with N2/O2 split	330 He	BBK/BBF/BBH
rocess control	Demethanizer (tops & bottoms)	60 He	BCT/BCS
	Deethanizer (tops & bottoms)	60 He	BCT/BCS
	Depropanizer (tops & bottoms)	60 He	BCT/BCS
	Debutanizer (tops & bottoms)	420 H2/He	BBK/BBJ
	Debutamer (tops & bottoms)	420 H2/He	BBK/BBJ
	Depentanizer (tops only)	420 H2/He	BBK/BBJ
	C4 Parafins/Olefins	420 H2/He	BBJ
	Propane/Propylene split	420 H2/He	BBJ

Defined column trains

Column train	Measured components	Carrier
designator		
BBC	C3+/He/N2/C1/CO2/C2=/C2/C2/H2	H2/He
BBF	C3+/N2/C1/CO2/C2=/C2	H2/He
BBG	C3+/N2/C1/CO2/C2=/C2/H2S/H2O	H2/He
BBH	C1+/He/O2/N2/CO/H2	H2/He
BBJ	C5+/C3/C3=/IC4/NC4/B-1 & IC4=/TB-2/CB-2/1,3-BD	H2/He
BBK	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	H2/He
BBM	C6+/C3/H2S/IC4/NC4/NeoC5/IC5/NC5	H2/He
BBP	O2/N2	H2/He
BBR	H2S	H2/He
BBS	C7+/C3/IC4/NC4/NeoC5/IC5/NC5/C6's	H2/He
BBT	C9+/C6's/C7's/C8's	He
BBW	O2	He
BBX	C4+/CYC3/PD/MA	H2/He
BCB	C3+/H2/N2/C1/CO2/C2=/C2/H2S	H2/He
BCC	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BCD	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	H2
BCF	C3+/N2/C1/CO2/C2=/C2	H2
BCG	C3+/N2/C1/CO2/C2=/C2	He
BCH	C7+/C3/H2S/IC4/NC4/NeoC5/IC5/NC5/C6's	H2/He

BCJ	H2 15 uL	N2
BCK	CO2+/He/O2/N2/CO/C1/H2	H2/He
BCM	H2S	H2/He
BCN	C4+/CYC3/PD/MA	H2/He
BCP	H2 30 uL	N2
BCR	H2O	H2/He
BCS	C3+/N2/C1/CO2/C2=/C2	He
вст	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BCW	H2	N2
BCX	ТМВ	He
BCZ	THT	He
BDB	H2S	He
BDC	C3+/N2/C2=/H2/C1/CO2/C2H4/C2	H2/He
BDD	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BDF	C3+/N2/C1/CO2/C2=	He
BDG	C3+/H2/N2/C1/CO2/H2S/C2=	H2/He

The guidelines or technical limits allowed for combining trains are as follows:

1. Up to two trains per enclosure

2. Up to two enclosures

3. Limited to a total of four trains per analyzer system.

The three letter combinations appearing in the far left column headed "Column train designator" correspond to the various sections outlined in the PGC1000 Applications Manual.

Installation dimensions

Contact us

ABB Inc. **Process Automation** Main Office 7051 Industrial Boulevard Bartlesville, OK 74006 Tel: +1 918 338 4888 +1 800 442 3097 +1 918 338 4699 Fax:

ABB Inc.

Process Automation 3100 S Sam Houston Parkway

South, Ste. 600 Houston, TX 77042 +1 713 587 8000 Tel: Fax: +1 713 266 4335

ABB Inc.

Process Automation

3900 S. County Rd. 1290 Odessa, TX 79765 Tel: +1 432 563 5144 Fax: +1 432 563 8043

ABB Inc.

Process Automation

2 Acee Dr. Natrona Heights, PA 15065 Tel: +1 724 295 6100 Fax: +1 724 295 6560

ABB Inc. **Process Automation**

4300 Stine Rd. Ste. 405-407 Bakersfield, CA 93313 Tel: +1 661 833 2030 +1 661 833 2034 Fax:

ABB Inc.

Process Automation 2705 Centennial Liberal, KS 67901 Tel: +1 620 626 4352 Fax: +1 620 626 4354

www.abb.com/totalflow

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accep any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, discolsure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB.

Copyright © 2012 ABB All rights reserved

Sales

Service

